Modularity functions maximization with nonnegative relaxation facilitates community detection in networks

نویسندگان

  • Jonathan Qiang Jiang
  • Lisa J. McQuay
چکیده

We show here that the problem of maximizing a family of quantitative functions, encompassing both the modularity (Q-measure) and modularity density (D-measure), for community detection can be uniformly understood as a combinatoric optimization involving the trace of a matrix called modularity Laplacian. Instead of using traditional spectral relaxation, we apply additional nonnegative constraint into this graph clustering problem and design efficient algorithms to optimize the new objective. With the explicit nonnegative constraint, our solutions are very close to the ideal community indicator matrix and can directly assign nodes into communities. The near-orthogonal columns of the solution can be reformulated as the posterior probability of corresponding node belonging to each community. Therefore, the proposed method can be exploited to identify the fuzzy or overlapping communities and thus facilitates the understanding of the intrinsic structure of networks. Experimental results show that our new algorithm consistently, sometimes significantly, outperforms the traditional spectral relaxation approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

A Sparse Completely Positive Relaxation of the Modularity Maximization for Community Detection

Abstract. In this paper, we consider the community detection problem under either the stochastic block model (SBM) assumption or the degree-correlated stochastic block model (DCSBM) assumption. The modularity maximization formulation for the community detection problem is NP-hard in general. In this paper, we propose a sparse and low-rank completely positive relaxation for the modularity maximi...

متن کامل

On approximate equivalence of modularity, D and non-negative matrix factorization

Community structures detection is one of the fundamental problems in complex network analysis towards understanding the topology structures of the network and the functions of it. Nonnegative matrix factorization (NMF) is a widely used method for community detection, and modularity Q and modularity density D are criteria to evaluate the quality of community structures. In this paper, we establi...

متن کامل

Optimality Of Community Structure In Complex Networks

Community detection is one of the pivotal tools for discovering the structure of complex networks. Majority of community detection methods rely on optimization of certain quality functions characterizing the proposed community structure. Perhaps, the most commonly used of those quality functions is modularity. Many heuristics are claimed to be efficient in modularity maximization, which is usua...

متن کامل

Computing an upper bound of modularity

Modularity proposed by Newman and Girvan is a quality function for community detection. Numerous heuristics for modularity maximization have been proposed because the problem is NP-hard. However, the accuracy of these heuristics has yet to be properly evaluated because computational experiments typically use large networks whose optimal modularity is unknown. In this study, we propose two power...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1103.4072  شماره 

صفحات  -

تاریخ انتشار 2011